
A   of computational materials science 
expands, an increasing agreement is developing 
in the engineering and scientifi c community that 

modeling should be an integral part of materials research 
and design. Modeling is being used as an analysis tool in 
industry to support the development of new products and 
processes. < e trend is driven by the fact that modeling 
helps reduce prototyping costs, reduces the time to market 
and assists product optimization. 

In some fi elds of engineering, modeling plays a more 
important role than in the others. For example, heavy use of 
modeling is made in circuit design and fl uid fl ow applica-
tions. Applications that require modeling the response of 
solid materials benefi t less. < e fundamental reason for this 
situation is the comparatively lower accuracy and higher 
complexity of the available models describing solids. Mate-
rial behavior is controlled by multiple physical phenomena 
that take place on various scales and by the interactions of 
these phenomena across scales. Current development of 
material modeling does not permit the full integration of 
the relevant physics. Most current models address a single 
physical process (deformation, heat transport, diff usion, 
etc) or, at most, two such as in thermo-mechanics, and are 
defi ned on a single spatial scale. < ey include constitutive 
equations which are supposed to refl ect the coarse-grained 
behavior of the underlying scales. < e constitutive laws are 
inherently imperfect, being experimentally validated on 
a restricted domain of variation of their parameters. < e 
uncertainty incorporated in the model by their use is often 
diffi  cult to estimate. An alternative to the use of constitutive 
equations is provided by multiscale modeling, in which the 
relevant physics is explicitly captured on multiple spatial 
and temporal scales. < e development of such unitary 
modeling capability is the objective of the emerging fi eld 
of computational materials science. 

A large variety of single-scale models has been de-
veloped over the years. At the smallest scale, that of the 
electronic structure, ab-initio calculations are performed. 
On the scale of the lattice in crystalline materials or the 

molecular scale in polymeric systems, the method of choice 
is atomistic modeling. In these models, each atom in the 
system is explicitly represented and its trajectory is traced. 
Discrete coarse grained models are used on larger scales. 
Examples from this category are discrete dislocation dy-
namics (DDD) models that capture the behavior of large 
populations of dislocations and coarse-grained polymer 
models, in which a group of atoms belonging to a mac-
romolecule are coarse grained into an equivalent object 
of physical properties defi ned based on separate atomistic 
simulations. Continuum models are used to represent 
the system behavior on larger scales. In these models, 
one identifi es the physics of interest and integrates the 
relevant partial diff erential equations. < e various physi-
cal phenomena are typically decoupled in the continuum 
and in some coarse grained models, while the physics is 
intrinsically coupled in the atomistics. < e scale at which 
the transition from discrete to continuum is made is largely 
problem dependent. For example, continuum elasticity may 
be used down to the atomic scale, while classical plasticity 
breaks down on the micrometer scale, the scale on which 
dislocation self-organization takes place. 

Multiscale models are based on the hierarchy formed by 
the techniques discussed above and their linkages. Linking 
the electronic structure and atomistics (discrete-to-discrete 
linkage) is usually performed by the derivation of a semi-
empirical interatomic potential description of atomic scale 
energetics. In this approach, the electronic degrees of 
freedom are represented schematically through an eff ec-
tive potential. < e potentials may be adjusted to fi t a data-
base of experimental and quantum mechanically-derived 
material properties. Linkages between continuum scales 
(continuum-to-continuum linkages) can be performed by a 
variety of methods. < ese may be grouped in two categories: 
sequential and embedded schemes. Embedded techniques 
include domain decomposition and the multigrid method. 
Sequential schemes are of the variational multiscale type or 
are based on asymptotic expansions in space and time. 

Arguably the most challenging scale linking problem 
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is that of coupling discrete and continuum models. In this 
Special Issue of the Journal of Multiscale Computational 
Engineering, a collection of articles that exemplify the state 
of the art in this fi eld is being brought together. 

Two main classes of methods have been proposed 
to address linking discrete and continuum systems. < e 
fi rst class includes methods that are sequential in nature. 
In these procedures, the input to a scale is provided by 
the statistical behavior of the underlying scale. A typical 
example is the calibration of constitutive equations to be 
used on continuum scales, based on the response of discrete 
models. < e article by Grijicic, Guoxin and Joseph demon-
strates such a procedure. < ese authors perform atomistic 
simulations to calibrate constitutive equations describing 
the response of particular types of interfaces subjected to 
opening and shear. < ese laws are then used to describe the 
response of interlamellar interfaces and colony boundaries 
represented as cohesive zones in a continuum fi nite ele-
ment model of a complex Ti alloy. < e continuum model is 
used to investigate the mechanisms controlling the fracture 
toughness of the material. Another example from this cat-
egory is provided in the article by Picu, in which a higher 
order, non-local continuum constitutive model for rubber 
elasticity is developed based on molecular considerations. 
< e classical, local constitutive model of rubber elasticity is 
applicable to the situations, in which the deformation fi elds 
do not vary signifi cantly on a length scale comparable with 
the size of a macromolecule. In this case, homogenization 
over molecular-size volume elements is possible. In some 
modern nanostructured polymers, however, the fi elds vary 
on the sub-molecular scale, and the classical molecular scale 
theory is not applicable. < e new formulation proposed in 
the article provides an “atomistically-informed” alternative 
to the classical molecular scale theory of rubbers.

An interesting example of coupling physical phenomena 
across the discrete-continuum demarcation line is discussed 
in the article by Johnson, Bose, Goldberg and Robinson. 
< ese authors present a procedure by which linear elasticity 
is coupled with electronic structure calculations in order 
to analyze the eff ect of strain on the optical and electronic 
properties of the material. < e results of this model are 
successfully compared with experimental spectral data.

Another sequential scheme, presented by Fısh and 
Schwob, is obtained by extending the formalism of the 
mathematical homogenization theory developed for 
con  tinuum systems. < e main distinctions between the 
conventional mathematical homogenization theory and 
this generalized approach are that the asymptotic expan-
sion contains multiple time scales, the continuum model 
possessing internal spatial and temporal scales, and that 
the multiple space-time asymptotic expansion is combined 

with equations describing the motion of atoms, rather than 
with continuum PDEs.

< e second class of methods aimed at coupling discrete 
and continuum systems includes techniques that embed 
several types of models into a unique framework. Typical 
examples are explicitly coupled atomistic-continuum and 
discrete dislocation dynamics-continuum models. An 
 ex cellent review of the state of the art in coupling atomistic 
and continuum models is presented in the article by Miller. 
In these models, the domain of interest is divided into 
regions of high and low deformation gradients. < e highly 
deformed regions are represented atomistically, while the 
rest of the model is continuum. < e two regions are coupled 
by suitable “handshaking” procedures. < e article also re-
views techniques used to couple atomistics, discrete disloca-
tion dynamics and continuum models. Another example 
of linking discrete dislocation dynamics and continuum 
elasticity is discussed in the review by Zbib, Shehadeh, 
Khan and Karami. < e authors present an overview of the 
modeling and simulation methods used in DDD and a pro-
cedure to couple DDD with continuum elasto-viscoplastic 
fi nite elements. A variety of applications of the coupled 
method is presented, ranging from modeling nanoindenta-
tion to understanding the interaction of dislocations with 
shock waves. Two other embedded schemes in which the 
domain of interest is decomposed into continuum and dis-
crete regions linked by appropriate operators are discussed 
in the article by Belytschko and Xiao. < e article by Shen 
and Wang presents a summary of recent advances along 
the line of modeling large populations of dislocations and 
the linkage with continuum crystal plasticity models. Shen 
and Wang pioneered the use of the concept, developed in 
phase fi eld modeling of phase transformations, to represent 
dislocation dynamics. Here, the fi eld variables denote the 
amount of dissregistry in the glide plane corresponding 
to a dislocation core, a generalization to 3D of the idea 
embedded in the Peierls-Nabarro model of a dislocation. 
< e model is applied to the study of several fundamental 
mechanisms of plastic deformation. Fınally, the article by 
Harik presents a purely continuum analysis of a problem 
defi ned on the discrete-continuum transition scale. 

Spatial and temporal scale linking is a challenging 
task. Despite the important advances made to date, the 
capabilities of current modeling methods are too limited to 
warrant their incorporation in commercial packages. < ese 
procedures are still in their embryonic development stage 
and their use outside the community of developers is rather 
limited. < e future of the fi eld depends on the close col-
laboration of experimentalists, theorists and computational 
scientists. We hope that this volume will stimulate interest 
in these methods and foster their future development.




